Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit II: Implementation
نویسندگان
چکیده
We describe a possible implementation of the nanomechanical quantum superposition generation and detection scheme described in the preceding, companion paper [Armour A D and Blencowe M P 2008 New. J. Phys. XX XXX]. The implementation is based on the circuit quantum electrodynamics (QED) set-up, with the addition of a mechanical degree of freedom formed out of a suspended, doublyclamped segment of the superconducting loop of a dc SQUID located directly opposite the centre conductor of a coplanar waveguide (CPW). The relative merits of two SQUID based qubit realizations are addressed, in particular a capacitively coupled charge qubit and inductively coupled flux qubit. It is found that both realizations are equally promising, with comparable qubit-mechanical resonator mode as well as qubit-microwave resonator mode coupling strengths.
منابع مشابه
Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: I. Echo scheme
We propose a scheme in which the quantum coherence of a nanomechanical resonator can be probed using a superconducting qubit. We consider a mechanical resonator coupled capacitively to a Cooper-pair box and assume that the superconducting qubit is tuned to the degeneracy point so that its coherence time is maximised and the electro-mechanical coupling can be approximated by a dispersive Hamilto...
متن کاملSuperconducting qubits coupled to nanoelectromechanical resonators: An architecture for solid-state quantum information processing
We describe the design for a scalable, solid-state quantum-information-processing architecture based on the integration of GHz-frequency nanomechanical resonators with Josephson tunnel junctions, which has the potential for demonstrating a variety of singleand multi-qubit operations critical to quantum computation. The computational qubits are eigenstates of large-area, currentbiased Josephson ...
متن کاملStrong squeezing and robust entanglement in cavity electromechanics
We investigate nonlinear effects in an electromechanical system consisting of a superconducting charge qubit coupled to a transmission line resonator and a nanomechanical oscillator, which in turn is coupled to another transmission line resonator. The nonlinearities induced by the superconducting qubit and the optomechanical coupling play an important role in creating optomechanical entanglemen...
متن کاملProbing tiny motions of nanomechanical resonators: classical or quantum mechanical?
We propose a spectroscopic approach to probe tiny vibrations of a nanomechanical resonator (NAMR), which may reveal classical or quantum behavior depending on the decoherence-inducing environment. Our proposal is based on the detection of the voltage-fluctuation spectrum in a superconducting transmission line resonator (TLR), which is indirectly coupled to the NAMR via a controllable Josephson ...
متن کاملQuantum state characterization of a fast tunable superconducting resonator
We demonstrate a frequency-tunable superconducting coplanar waveguide resonator, with a tuning range of half a gigahertz and a switching time of 1 ns. The resonator is made tunable by inserting a superconducting quantum interference device in the center strip of the resonator. Quantum measurements are made by probing the resonator with a superconducting qubit, allowing us to use microwave photo...
متن کامل